Survey of CPIl Production Systems

Collin Brown and Steve Martin

2025-02-03



Table of contents

Preface

Survey Methodology Notes

Value Suppression . . . . . . ..o

Introduction

1.1 Motivation . . . . . . . . L
1.2 Why Did We Run This Survey? . . . . . . .. .. ...
1.3 Overview of CPI Production Systems . . . . . ... .. .. ... ... ......
1.4 Related Work . . . . . . . . oL
1.5 How This Report Is Organized . . . . . ... ... ... .. ... ....
1.6 Note on Confidentiality and Privacy . . . . ... ... ... ... ... .....

Concepts

2.1 Systems and Teams . . . . . . . . .. Lo
2.2 Flowof Change . . . . . . . . . . .
2.3 Putting it All Together. . . . . . . . . . .. ..
2.4 Modular vs. Monolithic Systems . . . . .. ... ... L oL
2.5 Representative Groups of Systems . . . . . .. ..o oo oL

Systems and Teams Analysis
3.1 Steps Where Systems are Coupled . . . . . ... ... ... ... ........
3.2 Team Typesat Each Step . . . . . . . . . . . .. .. .. . ... .
3.3 Capturing System And Team Organizations Together . . . .. ... ... ...
3.4 Commonly Occurring System and Team Topologies . . . . . .. ... ... ...
3.4.1 One or more System Groups Span the Entire Flow of Change . . . . . .
3.4.2 There is exactly one “split point” between System Groups . . . . . . . .
3.4.3 There are two or more split points between system groups . . . . . . . .
3.5 Assigning Architectures to Organizations . . . . . .. .. .. ... ... ....
3.5.1 Monolithic Architecture . . . . . . . . . ... ... L.
3.5.2 Hybrid Architectures . . . . . . . . ..o
3.5.3 Modular Architectures . . . . . . ...
3.6 Assigning Team Types to Organizations . . . . . . . . .. .. ... ... ....
3.7 Are Certain Team Types Correlated with Certain Architectures? . . . . . . ..

ot

© © 00 oS

10

11
13
14
15
18



4 Tools and Technologies
4.1 Version Control System Usage . . . . . . . . . . ... . . ..
4.2 Commercial Software . . . . . . . . ...
4.3 Project Management Software . . . . . . . . . ... .. ... ... ... ... ..
4.4 Programming Languages . . . . . . . . . . . ...
4.5 Data Storage Tools . . . . . . . . . L

5 System Age and Updates

5.1 System Age .

5.2 System Update Frequency . . . . . . . . .. .. . o

6 Number of People

6.1 Number of People (Small Changes) . . . . . . ... ... ... ... .......
6.2 Number of People (Large Changes) . . . . . . ... ... ... ... .......

7 Lead Time

7.1 Lead Time (Small Changes) . . . . . . . .. .. ... ... ... .......
7.2 Lead Time (Large Changes) . . . . . . . . . .. ... ..

8 Alternative Data

8.1 Alternative Data Usage . . . . . . . . . . . ... ...
8.2 Which Price Index Methods are Used on Alternative Data Sources . . . . . . .
8.3 What Challenges are Faced in the Adoption of Alternative Data . . . . . . ..

9 Challenges

10 Conclusion

10.1 Bottom Line Up Front . . . . . . . . . . ... ... o
10.1.1 System and Team Organization . . . . . . . . . .. ... ... .. ....
10.1.2 Tools and Technologies . . . . . . . . . . ... . ... ...
10.1.3 System Age and Updates . . . . . . . . ... ... ... ... .. ...,
10.1.4 Number of People . . . . . . . . . . ..
10.1.5 Lead Times . . . . . . . . . . o o
10.1.6 Alternative Data Usage . . . . . . . . . .. ... ... ... ......
10.1.7 Overall Challenges Faced . . . . . ... ... ... ... ... ...,

10.2 Practical Suggestions . . . . . . . . .. L

10.3 Future Work

References

29
29
30
32
33
35

37
37
40

44
44
46

49
50
52

57
o7
59
60

61

64
64
64
65
66
66
67
67
68
68
71

73



Preface

We would like to acknowledge the helpful feedback and numerous contributions from our
colleagues in the Workstream on CPI Systems Architecture in the Task Team on Scanner Data
under the UN Committee of Experts on Big Data and Data Science for Official Statistics.


https://unstats.un.org/bigdata/task-teams/scanner/index.cshtml
https://unstats.un.org/bigdata/

Survey Methodology Notes

We follow a few standard practices for reporting on survey data.

Value Suppression

To preserve anonymity, we do not disclose any values if there are 2 or fewer respondents that
take on the value. As a result, throughout the report, certain tables and figures may be
presented in a way where certain categories are omitted or grouped together.



1 Introduction

We created this survey about the state of Con-

sumer Price Index (CPI) Production Systems . ..

on behalf of the Task Team on Scanner Data. . ‘ .‘ U N Data
under the UN Committee of Experts on Big

Data and Data Science for Official Statistics.

While this report is specific to the state of CPI Production Systems at National Statistics
Organizations (NSOs) around the world, our hope is that some of the content in this report
is also useful for a wider audience maintaining similar kinds of systems. As such, we attempt
to explain our results in a general way and highlight opportunities where our survey approach
and findings could be applied in related settings.

1.1 Motivation

In our time working at National Statistics Organizations (NSOs), we have encountered some
extremely complicated systems that exist in order to produce various analytical and data
products such as consumer price indexes, national accounts figures, or labour force statistics.
These complicated systems and the teams who maintain them are the subjects of this survey
and write up. To reduce ambiguity, we refer to these systems as Complex Analytical
Systems throughout this report.

Complex Analytical Systems involve significant amounts of code, documentation, and other
non-code artifacts such as Excel Workbooks that carry out complex business logic in order to
transform input data into output data. Additionally, they are often developed entirely or in
large part by people with backgrounds in Economics, Statistics, Mathematics, or another area
related to the domain of Official Statistics.

These Complex Analytical Systems differ from traditional software systems in a number of
important aspects':

!For readers who are unfamiliar with the Consumer Prices business domain, these are techniques that are used
to calculate period-over-period price changes from a given data source.
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https://unstats.un.org/bigdata/

Complex Analytical Systems

Typical Software System

Multiple distinct scripts that are run
sequentially and perform complex data
manipulations.

Running time measured in minutes/hours
Human in the loop activities to interpret
results.

Ad-hoc (messy) data gathered from whatever
data sources are available.

Batch workloads that are run manually (or
semi-manually).

Operate on a large fraction of an entire table
quickly.

One code base representing an entire
application.

Running time measured in milliseconds.
Completely autonomous system.

Highly structured data whose schema is
designed in lock step with the rest of the
system.

System running continuously in an event
loop waiting for user input.

Search for one specific record in a large
table quickly.

Due to differences like those mentioned above, there is not a perfect mapping between best
practices from the software engineering world and pain points currently experienced by teams
maintaining Complex Analytical Systems. However, there are certainly some best practices
from software engineering that are highly appropriate to solve some of the problems faced in
the development and maintenance of Complex Analytical Systems.

To this end, we hope our survey can help bridge the gap between well-understood industry
best practices from the world of software engineering, and those aspects of Complex Analytical
Systems that could benefit from these best practices. Our hope is that the insights gained
and the survey methodology deployed may be valuable for other Complex Analytical Systems
facing similar challenges.

1.2 Why Did We Run This Survey?

In our experience, we’ve noticed that many teams who are responsible for Complex Analytical
Systems struggle with managing many aspects of system complexity.

Complex Analytical System business domain teams are typically comprised of individuals
with strong analytical skills and significant domain knowledge, however, they often do not
have specific training in software engineering concepts. Therefore, they are often not exposed
to the significant body of knowledge that has been developed over decades to deal with the
kinds of system complexity problems that software developers are routinely exposed to.

We have also found that individuals in these business domains are often missing the vocabulary
and concepts to articulate the state of their Complex Analytical Systems. As a result, when



these individuals try to explain where they are struggling to a more IT-oriented audience,
miscommunication often results, and it becomes difficult to arrive at reasonable solutions.

In this survey, we ask questions that capture several germane aspects of system organization,
team organization, technology choices, and business outcomes using language, terms, and
conceptual models that are more familiar to individuals on these business domain teams. Our
rationale for doing this is threefold.

1. Measure and describe the state of many Complex Analytical Systems around the world
within a specific business domain (CPI Production Systems).

2. Provide some concrete and practical suggestions to address common areas of struggle
within this domain across many NSOs.

3. Expose people from these business domain teams to software engineering concepts that
are relevant in the development and maintenance of Complex Analytical Systems.

While this report is tailored towards a Consumer Prices domain audience, we welcome and
encourage readers from different domains to read through this report. We make significant
efforts to avoid using too much domain-specific jargon, and present findings in a way that
should comprehensible to a more general audience. In Chapter 10, we elaborate on aspects of
our survey we believe to have high external validity, provide some practical suggestions that
are applicable to Complex Analytical Systems in general, and describe some productive areas
of future exploration that are not limited to the Consumer Prices business domain.

1.3 Overview of CPIl Production Systems

With the above motivation in mind, we conduct this survey for CPI Production Systems
specifically, which are a kind of Complex Analytical System described in Section 1.1. More
precisely, these systems take data on the price of consumer goods purchased throughout an
economy and calculate period-over-period price changes of these goods. These price changes
are ultimately mapped to a taxonomy of product categories, with the highest level of the
taxonomy being the monthly “all items” CPI that is commonly used when discussing the
overall level of inflation.

The recent adoption of alternative data sources? in the calculation of CPIs has further increased
the complexity of these systems, and has increased the importance of skills in newly emerging
disciplines such as Data Science, Data Engineering, and Analytics Engineering.

2Note that there is a small sample size caveat with observations involving Other Mix teams. Had the sample
size been larger, the observations we observed with this team type may not have been as extreme as what
we observed in the survey.
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1.4 Related Work

We borrow and adapt several ideas presented in Skelton, Pais, and Malan (2019) such as
the concepts of Stream-aligned teams and the Flow of change in our survey. These concepts
(discussed in greater detail in the following sections) can be applied to understand how teams
are organized around the various steps in a complex data processing workflow.

We also borrow a number of ideas from Forsgren, Humble, and Kim (2018). Particularly,
multiple of the DevOps Research and Assessment (DORA) metrics they present are highly
relevant in measuring the business outcomes of teams that maintain CPI systems.?

We believe that multiple ideas presented in Dehghani (2022) are highly applicable to the CPI
Systems under study. Specifically, we believe that the concept of Data-as-a-Product (and
teams organized around these Data Products) provides a useful framework for thinking about
how these systems and teams interact with one another. We also contrast domain-oriented
decentralized teams with centralized teams.

Although we do not make specific references to it in our survey, we believe the Reproducible
Analytical Pipeline (RAP) work by NHS (2017) does a good job at explaining how teams can
introduce relevant tools and practices to workloads oriented around data processing.

Throughout this write up, we distinguish between software systems and I'T professionals being
embedded in domain teams versus being centralized outside of domain teams. Orga-
nizing software system architecture around business domains is not a new idea in software
engineering (see Domain Driven Design by Evans (2004), and more recently Software Archi-
tecture: The Hard Parts by Ford et al. (2021) and Fundamentals of Software Architecture
by Richards and Ford (2020), for example). However, we believe this distinction may not be
well understood or formalized in the context of the teams who maintain the kinds of Complex
Analytical Systems described in Section 1.2, so we pay special attention to this distinction
throughout this write up.

1.5 How This Report Is Organized

This report is presented in the order that the survey was conducted, with findings presented
along the way.

o Chapter 2 covers the key conceptual models and terminology used to articulate concepts
about system and team organization.

o Chapter 3 analyzes our findings with respect to system and team organization.

3We suspect that this is slightly biased by the fact that the majority of Stream-Aligned teams in our sample
are comprised of domain-analysts only rather than having both domain-embedded analysts and domain-
embedded IT professionals.


https://teamtopologies.com/key-concepts
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1.6

Chapter 4 covers some high-level questions on the use of tools and technologies required
to develop and maintain CPI Production Systems.

Chapter 5 covers questions about the age and update frequency of systems.

Chapter 6 covers questions about the number of individuals required to participate in
system changes.

Chapter 7 covers questions about a concept called lead time, which measures the end-to-
end time required to implement a change to a software component.

Chapter 8 covers questions about the usage of alternative data in CPI Production Sys-
tems.

Chapter 9 covers the challenges CPI Production System teams face with respect to
maintaining their systems.

Chapter 10 concludes with a summary of the most notable findings from the survey, some
practical insights to address some common areas of struggle, and some areas of future
work.

Note on Confidentiality and Privacy

As part of the administration of this survey, we ensured respondents that their data will be
treated confidentiality. Therefore, no individual response data are made available in this report;
all results presented are aggregated over all respondents.

10
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2 Concepts

This survey is concerned with the interaction between teams, software systems, and the flow
of change from input (upstream) data to output (downstream) data.

Since this survey is specifically focused on CPI Production Systems, we orient the flow of
change around key Generic Statistical Business Process Model (GSBPM) steps. Some of these
steps are quite generic and common to most data teams (e.g., Ingestion, Processing), while
others are very specific to CPI teams (e.g., Elementary Index Calculation, Elementary Index
Aggregation).

The concepts introduced in the rest of this page can easily be applied to other domain-specific
workflows, but everything that follows is implicitly explained in the context of these GSBPM
steps.

2.1 Systems and Teams

Input
For the purposes of this survey, we define a sys-

Input system ——»| Output | tem as any indivisible (atomic) software com-
ponent that takes one or more data inputs and
produces one or more data outputs.

Input

(a) System Diagram

When we refer to an indivisible software component, we mean that the component runs “en-
tirely or not at all” with respect to the transformation of inputs into outputs. For example,
if there is one Python script that reads a file and writes an intermediate file, and a second
R script that reads the intermediate file and produces another output file, we would consider
this to be two separate systems.

The types of systems developed and maintained by the teams being surveyed can vary wildly.
Therefore, we intentionally keep the definition of system vague so that it captures the key

11
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activity of transforming data without imposing any assumptions about how data are trans-
formed.

A team is defined as a group of individuals who maintain one or more systems. Teams can
be composed of many different types of professionals, but for the purpose of this survey we
distinguish between those who are Information Technology (IT) professionals (e.g., software

developers) and those who are non-IT analysts (e.g., economists, statisticians)!.

Importantly, we also distinguish whether these teams are embedded in the price-statistics
domain of the organization or work elsewhere in the organization. The detail we care about
here is whether the team developing and maintaining one or more systems shares business
context and domain knowledge with the team making use of these systems, or whether they
do not share this business context and domain knowledge.

In total, we define the following 5 team types for the purposes of this survey.

Team Type Description

Corporate IT Information Technology (IT) professionals who
are part of an organization-wide central group
(i.e., not functionally embedded in the price
statistics team).

Domain-Embedded IT IT professionals who are functionally
embedded in the price statistics team (i.e., part
of the price-statistics team, not the corporate IT
department).

Domain-Embedded Analysts Professionals without a formal IT background
(e.g., economists, statisticians) who are
functionally embedded in the price statistics
team.

Analysts Elsewhere in the Organization  Professionals without a formal IT background
who are not functionally embedded in the
price statistics team.

External Consultants or Contractors Professionals outside of the organization to whom
system development /maintenance work is
contracted.

INote that there is a small sample size caveat with observations involving Other Mix teams. Had the sample
size been larger, the observations we observed with this team type may not have been as extreme as what
we observed in the survey.
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2.2 Flow of Change

The business processes that NSOs follow to create their country’s CPI is a special case of
the General Statistical Business Process Model (GSBPM). We base our flow of change on the
GSBPM model and specialize it slightly towards the CPI domain. We define each step in our
flow of change as follows.

Flow of Work
Raw Data Final Outputs
Data Ingestion Data Processing Elementary indexes Aggregation Finalization
System —>»| System m— System » System » System CPI
Team A Team B Team C
Figure 2.2: Flow of Work
Process Explanation
Data Ingestion Activities to bring acquired data into a

machine-readable state where it is ready for further
processing. For example, entering paper surveys
into an electronic database or querying a REST
APT to collect prices from a website.

Data Processing Activities to clean, validate, correct, impute, or
otherwise adjust the data so that it is in a state
where it is ready to be used to produce elementary
indexes.

Elementary Indexes Calculate price indexes from the processed data for
a given geography and product category (i.e.,
elementary aggregate) at a point in time?.

Aggregation Aggregate the elementary price indexes into
higher-level indexes (e.g., “All Ttems” CPI)3.
Finalization Store price indexes for subsequent use as part of

analytical activities, and eventual dissemination.

2We suspect that this is slightly biased by the fact that the majority of Stream-Aligned teams in our sample
are comprised of domain-analysts only rather than having both domain-embedded analysts and domain-
embedded IT professionals.

3For readers who are unfamiliar with the Consumer Prices business domain, these are techniques that are used
to calculate period-over-period price changes from a given data source.
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Figure 2.2 overlays all of the concepts discussed so far onto a single diagram. The flow of
work (raw data to final CPI) can be read from left to right, with the green ovals representing
systems and the boxes drawn around one or more systems representing the teams that own
them.

The systems in these diagrams can be “piped” together, implying that the output of one system
becomes the input to the next system. To simplify the notation, the intermediate input/output
boxes are simply shown as an arrow from one system node to the next system node.

In the event that multiple teams collectively maintain a very large system, a team can be
interpreted as the larger organizational unit that oversees the various sub-teams involved.

2.3 Putting it All Together

Flow of Work
Raw Data Final Outputs
Data Ingestion Data Processing i Elementary indexes Aggregation Finalization
—>
Econ/Stats Team Econ/Stats Team
e I
>
System —> System —J
System
> Y - CPI
Econ/Stats Team
>>» System -<\
K—) System — System
Econ/Stats Team r’
System —> System —/
Corporate IT Econ/Stats T \ Corporate Iy
con/Stats Team
= J

Figure 2.3: Putting it All Together
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Figure 2.3 shows an example of what one of these diagrams could look like for a real NSO. A
description of team/system organization that could correspond to this example is described
below.

e A corporate IT team maintains a large Java application with an application-specific

database that handles ingestion of most data sources?.

e A team of domain-embedded analysts (e.g., economists and statisticians) maintain
a system written in Python, using pandas to ingest data from one source that does not
integrate with the corporate system?®.

¢ A team of domain-embedded analysts maintain a series of systems, using some combi-
nation of R and Python, that perform data processing and computation of elementary
indexes.

— The top system handles both the data processing step and the elementary index
calculation step, implying it would not be straightforward to decouple these two
concerns.

— The bottom three cases have two distinct systems that handle data processing and
elementary index calculation separately.

e A second system owned by corporate IT aggregates the elementary indexes and stores
the resulting price indexes in a database.

2.4 Modular vs. Monolithic Systems

We do not impose any restrictions on the number of systems that can belong under a team or
a GSBPM step. Moreover, we do not impose any restriction on how many GSBPM steps a
system can span. This flexibility lets us express the extent to which systems span across these
GSBPM steps.

Figure 2.4 and Figure 2.5 show contrasting examples of two extreme scenarios. Figure 2.4 is
an example where there is one system owned by one team that handles all 5 GSBPM steps for
all inputs. In contrast, Figure 2.5 shows the scenario where each GSBPM step has a dedicated
system that does not cross between GSBPM steps.

It is unlikely that any NSO will have systems organized like one of these extremes, rather most
organizations will likely fall somewhere in between.

4We are skeptical that these two facts can be true at the same time. Our suspicion is that some respondents
have not explicitly thought about version control as a distinct problem with purpose-built tooling that exists
to solve it.

5In general, the Consumer Price Index is a non-revisable product, meaning that it is not straightforward to
“roll back” a change in the same way that would be possible in other settings. Because of this, there is
a certain level of due-diligence required for large system changes, meaning there are some limits on how
frequently CPI Production Systems can be updated.

15
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Flow of Work
Raw Data Final Outputs

Data Ingestion Data Processing Elementary Indexes } Aggregation Finalization

Input

Input

Input

Input

1

Input

Input

Input System CPI

Input

Input

Input

AR

Input

Input

Team 1

Figure 2.4: Perfect Monolith Example
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Raw Data

Input

Flow of Work

> Final Outputs

e |

Input

i

Input

i

i

Input

Input

£

Data Ingestion Data Processing Elementary Indexes Aggregation Finalization
VN VN T\ T\ /T O\
{ System | » System | » System | » System | » System |
N4 N4 N4 N4 N4
Team 1
/ o ‘\\ / o ‘\\ / o ‘\\ / o ‘\\ / o ‘\\
» System | » System | » System | » System | » System |
N4 N4 N4 N4 "
Team 1
/ o ‘\\ / o ‘\\ / o ‘\\ / o ‘\\ / o ‘\\
» System » System | » System | » System | » System |
N4 N4 N4 N4 "
Team 2
/ o ‘\\ / o ‘\\ / o ‘\\ / o ‘\\ / o ‘\\
» System » System | » System | » System | » System |
N4 N4 N4 N4 "
Team 3
/ o ‘\\ / o ‘\\ / o ‘\\ / o ‘\\ / o ‘\\
» System » System | » System | » System | » System |
N4 N4 N4 N4 "
Team 3
/ o ‘\\ / o ‘\\ / o ‘\\ / o ‘\\ / o ‘\\
» System » System | » System | » System | » System |
N4 N4 N4 N4 "
Team 3

Figure 2.5: Perfect Modular Example
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2.5 Representative Groups of Systems

To get a complete understanding of each NSO’s team organization and system topology, we
would need to have a comprehensive whiteboarding session with representatives from each
NSO to fully articulate their CPI team structures and system architectures. This is obviously

not feasible.

To get around this impracticality, we introduce the concept of a representative system
group to the survey, which lets respondents describe one or more groups of systems that
follow a typical pattern in their organization. Figure 2.6 shows what one such system group
might look like using the example shown earlier in Figure 2.3.

Raw Data

Flow of Work
Final Outputs
Data Ingestion Data Processing Elementary indexes Aggregation Finalization
/ \ .................... .
System
_\-§_)
Econ/Stats Team Econ/Stats Team
—>
System —>| System —J
System
> Y - cPI

System
[ = ™

Corporate IT

k) System

System

Econ/Stats Team

—> System

Econ/Stats Team

—> System —/

Econ/Stats Team

Corporate y

Figure 2.6: Representative System Group

The systems enclosed by the dashed red line in the diagram constitute a representative group,
composed of three subgroups of systems.

e There is a single system for data ingestion that is maintained by the organization’s
corporate IT department (system group 1).

18



e There are three systems that handle data processing and three systems that handle
elementary index calculation. Each pair of systems is maintained by one or more small
teams of domain-embedded analysts (system group 2).

e There is one large system that handles aggregation and finalization of elementary index
calculations. This system is also maintained by the corporate IT department (system
group 3).

Our rationale behind asking respondents to describe their representative system group is three-
fold:

1. Significantly reduce the response burden compared to completely articulating the state
of all systems and teams that produce the CPI.

2. Reliably capture “system boundary” points where there is a switching between one group
of systems and the next. While we do not have the resolution to know which GSBPM
steps are crossed within a representative system group, we know for certain that there
is a system boundary between two distinct representative system groups.

3. Reliably capture which kinds of teams occur together.

19



3 Systems and Teams Analysis

Our first objective in this analysis is to describe the kinds of system and team organizations
we encountered in our survey. We start with an explanation of our methodology, followed by
some notable findings.

3.1 Steps Where Systems are Coupled

One important piece of system architecture information we were interested in is cases where
systems span more than one GSBPM step along the flow of change. Using our definition of
“system” from Chapter 2, a system that spans two or more GSBPM steps implies that it would
not be straightforward to modify just one GSBPM step in the system without affecting the
others!. This relates to the concept of coupling in software engineering, which measures the
extent to which distinct software modules depend on each other.

!For example, a single Python script that processes data using Pandas and immediately performs a price index
calculation on the processed data frame while it’s still in memory is a system that spans the (1) Processing
and the (2) Elementary Indexes GSBPM steps. Such a system has coupled the Processing logic and the
Elementary Indexes logic because it is not straightforward to change just the Processing component without
also needing to consider how the Elementary Indexes component is affected.

20
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Figure 3.1: Conceptual

|m————
L

b) Bad (high coupling, low cohesion)

high  coupling. Source:

diagram  of loose and

https://en.wikipedia.org/wiki/Coupling (computer programming)

We asked the following question to get a coarse-grained understanding of systems that spanned
more than one GSBPM step.

Indicate which steps are handled by the same system, for up to five typical systems.

© For example, a setup with one system that handled "Data ingestion", "Data processing”, and "Elementary indexes", a second system that handled "Data processing" and "Elementary indexes", and
a third system that handled "Elementary indexes", "Aggregation”, and "Finalization", would look like this

Data ingestion Data processing Elementary indexes Aggregation Finalization
System 1 ] @ ]
Systermn 2 =] %]
System 3 7] 7] (]

Data ingestion

Data processing

Elementary indexes Aggregation Finalization

System 1
System 2
System 3
System 4

System 5

Figure 3.2: Systems Spanning Multiple GSBPM Steps Question

We note how frequently systems cross certain GSBPM steps in Table 3.1.

21



Table 3.1: Systems that span across multiple GSBPM steps

Data Data Elementary
ingestion processing indexes Aggregation Finalization Frequency
X X 21
X X 6
X X 0
X X 6
X X X 12
X X X 8
X X X 11
X X X X 4
X X X X X 20

The most common pattern we observed was that the same system handled both data ingestion
and data processing with 21 occurrences. We suspect this is is fairly common as the two
activities are conceptually similar, and often leverage similar tooling. For example, if an
analyst wrote a web-scraping script to collect price data from a certain website, it’s reasonable
that they would also perform some data cleaning activities in the same script before writing
the output to persistent storage.

The second most common pattern we observed was the “Monolith” pattern, where we observe
one system spanning all 5 GSBPM steps 20 times. We elaborate on this concept later in this
section, but our suspicion is that systems like these mostly fall into one of two categories: (1)
a small team and an Excel Workbook that handles everything from ingestion to finalization
or (2) a single system managed by an IT team.

Monolithic systems are not inherently bad. If they are carefully designed for maximum cohesion
and minimal coupling, they can be maintainable. However, if monoliths emerge accidentally,
they often involve many tightly coupled components and become very difficult to maintain in
the long run.

The next two most frequent coupling patterns are ingestion-processing-elementary
indexes (12 occurrences) and elementary indexes-aggregation-finalization (11 occur-
rences). The latter makes some sense to us as these three concerns can be quite bespoke
and tailored to the price statistics business domain. The former, however, surprised us as
ingestion and processing are fairly generic data preparation activities, while elementary index
calculation is a highly specific price statistics activity.

We were also surprised to learn that there are zero occurrences of a system spanning elemen-
tary indexes-aggregation. In the price statistics business domain, these concepts are often
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closely related, so we thought there would be more cases where a single system handled both
StepSQ.

3.2 Team Types at Each Step

The next concept we try to learn in the survey is which types of teams discussed in Chapter 2
are present at each GSBPM step in the flow of change.

We present respondents with the following question.

For each team, indicate if this team maintains at least one system for each step to make your CPL

Data ingestion Data processing Elementary indexes Aggregation Finalization

Corporate IT

Domain-embedded IT
Domain-embedded analysts

Analysts elsewhere in the organization

External consultants/contractors

Figure 3.3: Systems Spanning Multiple GSBPM Steps Question

Table 3.2: Common Team Combinations within GSBPM Steps

Corporate Domain Other Team
1T Domain IT  Analysts  Analysts Consultants Type Frequency

X Domain 120
Analyst
Only
X X Domain 25
Analysts
and
Domain

IT

2An example of a system that performs both elementary index calculation and aggregation would be if the
same script calculated component price changes in apples, bananas, and oranges, then the same script also
calculated the overall price change in fruit from these component price changes.
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Corporate Domain Other Team

1T Domain IT  Analysts  Analysts Consultants Type Frequency

X Corporate 33
IT-Only

X Domain 20

IT-Only

X X IT-Only 11

X X Corporate 45
IT and
Domain
Analysts
Only

Table 3.2 shows how frequently certain team combinations were reported within any given
GSBPM step.

We were surprised to see that Corporate IT and Domain Analyst teams occurred almost
twice as frequently as teams with Domain-embedded IT and Domain-embedded analysts. In
particular, this suggests that technical expertise offered by IT personnel is often centralized
outside of the domain area rather than functionally embedding I'T personnel within the domain
team.

3.3 Capturing System And Team Organizations Together

3.4 Commonly Occurring System and Team Topologies

We begin by sharing some commonly occurring system and team topologies that occurred in
our responses.

We perform k-means clustering with a cluster size of 3 on each respondent’s answer the “system
topology” part of the Representative System Group question?.

We were not able to find any rule or explanation that perfectly split respondents into some
number of clusters for this question.

However, we were able to identify some high-level patterns that were consistent across the 3
groups. We use these patterns to characterize 3 archetypes that are explained below along
with some illustrative examples from each cluster.

3When working with this quantity of data, it is important to pay attention to the data types of each column
and to choose the most parsimonious data types. For example, if 3 columns can be correctly represented
with boolean, 16-bit integer, and 32-bit integer data types, there are significant memory savings to be gained
by casting the variables to these types upfront.
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3.4.1 One or more System Groups Span the Entire Flow of Change

Ingest  Process Elementals Aggregate Finalize

System Group 1 TRUE TRUE TRUE TRUE TRUE
System Group 2 FALSE FALSE FALSE FALSE FALSE
System Group 3 FALSE FALSE FALSE FALSE FALSE
System Group 4 FALSE FALSE FALSE FALSE FALSE
System Group 5 FALSE FALSE FALSE FALSE FALSE

3.4.2 There is exactly one “split point” between System Groups

Ingest  Process Elementals Aggregate Finalize

System Group 1 TRUE TRUE FALSE FALSE FALSE
System Group 2 FALSE FALSE TRUE TRUE TRUE
System Group 3 FALSE FALSE FALSE FALSE FALSE
System Group 4 FALSE FALSE FALSE FALSE FALSE
System Group 5 FALSE FALSE FALSE FALSE FALSE

3.4.3 There are two or more split points between system groups

Ingest  Process Elementals Aggregate Finalize

System Group 1 TRUE FALSE FALSE FALSE FALSE
System Group 2 FALSE TRUE FALSE FALSE FALSE
System Group 3 FALSE FALSE TRUE TRUE TRUE
System Group 4 FALSE FALSE FALSE FALSE FALSE
System Group 5 FALSE FALSE FALSE FALSE FALSE

3.5 Assigning Architectures to Organizations

We use responses to the Representative System Group question to assign NSOs to one of the
three architecture types defined below.
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3.5.1 Monolithic Architecture

We assume that an NSO has a monolithic architecture if any of their system groups span all
5 GSBPM steps?,®.

Our reasoning for this assumption is that if the respondent thought a system group spanning
all 5 GSBPM steps was similar enough that there was no need to split any subset of it into
a second system group, it is probably due to coupling between one or more systems in the
system group.

It is important to note that since we do not ask questions about the quantity or span of
systems, we cannot know for certain whether or not a system group spanning all 5 GSBPM
steps is truly monolithicS.

For example, a system group that spans all 5 GSBPM steps could be comprised of one system
that truly is monolithic with respect to the 5 GSBPM steps, or it could be comprised of 5 or
more distinct systems that the respondent felt were sufficiently representative of their typical
workflow”.

Nevertheless, we needed to make some simplifying assumptions to make the response burden
of this survey realistic, and we do not believe this assumption is too far fetched.

3.5.2 Hybrid Architectures
We classify any NSO that (1) is not a monolith and (2) has exactly two system groups with
any split between them as having a Hybrid architecture type.

Our rationale for this category is to look at cases where there is one “boundary point” between
two distinct system groups.

“Note that there is a small sample size caveat with observations involving Other Mix teams. Had the sample
size been larger, the observations we observed with this team type may not have been as extreme as what
we observed in the survey.

SWe are skeptical that these two facts can be true at the same time. Our suspicion is that some respondents
have not explicitly thought about version control as a distinct problem with purpose-built tooling that exists
to solve it.

SWe suspect that this is slightly biased by the fact that the majority of Stream-Aligned teams in our sample
are comprised of domain-analysts only rather than having both domain-embedded analysts and domain-
embedded IT professionals.

"For readers who are unfamiliar with the Consumer Prices business domain, these are techniques that are used
to calculate period-over-period price changes from a given data source.
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3.5.3 Modular Architectures

We classify any NSO that (1) is not a monolith, (2) is not a hybrid, and (3) has three or more
system groups with any splits between them as having a Modular architecture type.

While this kind of architecture is not necessarily perfectly modular, there are definitely two or
more “boundary points” between three or more distinct systems.

There are a couple of important points to note about Hybrid and Modular architectures as
defined above.

1. Unlike Monolithic architectures where we have to make an assumption about the internal
structure of a system group, here we know for certain that there are explicit “boundary
points” between two system groups that the respondent deemed sufficiently different to
not be grouped together.

2. Using our definition of Systems given in Chapter 2, Hybrid and Modular architectures

are guaranteed to pass output data from one system as input data to another system at

least once®.

3.6 Assigning Team Types to Organizations

We assign each organization one or more of the following team types using the following
definitions.

e Stream Aligned team: A system group is maintained by domain-analysts, domain-I1T,
or both.

e IT-Only team: A system group is maintained by corporate-IT, domain-IT, or both.

e Analyst-Only team: A system group is maintained by domain-analysts, elsewhere-
analysts, or both.

¢ Other Mix team: Assigned to organizations that have not been assigned to any of the
above three team types.

Note: Unlike the architecture definitions earlier in this section, these team types are not
mutually exclusive in the way we define them.

8In general, the Consumer Price Index is a non-revisable product, meaning that it is not straightforward to
“roll back” a change in the same way that would be possible in other settings. Because of this, there is
a certain level of due-diligence required for large system changes, meaning there are some limits on how
frequently CPI Production Systems can be updated.
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For example, an organization could have one system group maintained by a Stream Aligned
team, and a second system group maintained by an IT-Only team®.

3.7 Are Certain Team Types Correlated with Certain Architectures?

We define similarity between organizations having a particular team type and a representative
system with a particular architecture as follows.

Has Architecture Type == 1 A Has Team Type == 1

respondents

Similarity =
Z1"espondents Has Team Type == 1
The rationale for this similarity metric is that we care about what fraction of organizations
with a particular team type also uses a given architecture type relative to how many instances
of that team type are observed in the sample. Note that this can also be interpreted as a
conditional probability where team type is the conditioning variable.

Monolith Hybrid Modular
Stream Aligned Team  0.465116279069767 0.13953488372093 0.395348837209302
IT-Only Team 0.346153846153846 0.153846153846154 0.5
Analyst-Only Team 0.4 0.2 0.4
Other Mix > 0.75 < 0.25 < 0.25
Sample Average 0.491803278688525 0.147540983606557 0.360655737704918

There are a few notable observations to point out in the above distribution'".

1. IT-Only teams are more likely than average to be present in NSOs with Modular repre-
sentative systems.

2. Stream-Aligned teams are more likely to be present in NSOs with Monolithic represen-
tative systems compared to IT-Only teams.

3. Other Mix teams were much more likely to be present in NSOs with Monolithic repre-
sentative systems compared to all other team types'!.

Throughout the remainder of this report, we look at how various practices and outcomes are
associated with the presence of each architecture type and team type.

9For example, if there is evidence that certain team structures, team interaction modes, and system archi-
tectures are more effective than others, then organizations that adopt the improved team topologies and
system architectures may see reduced maintenance costs and faster delivery times, among other benefits.

10UPSERT is a portmanteau of the common INSERT and UPDATE database operations.

11Tt is important to note that a relatively small fraction of the sample contained Other Mix teams, so this result
could be partly or entirely explained by a small number of outliers.
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4 Tools and Technologies

In this section, we look at various tools and technologies in use by NSOs.

4.1 Version Control System Usage

Complex Analytical Systems, such as the systems used in monthly CPI Production, often need
to synchronize and integrate multiple versions of related code, data, and documentation. This
is especially important for creating reproducible analytical pipelines (NHS (2017)), or enabling
multiple individuals to work concurrently on the same project.

Version Control Systems (VCS) are tools that systematically manage changes in a codebase
over time. At the time of writing, Git is by far the most popular software for this purpose,
and platforms such as Github and GitLab have built extensive functionality around projects
managed with Git!.

Figure 4.2 shows the VCS used by respondent NSOs.

Surprisingly, the most common response by far was that the respondent did not use version
control software at all for their CPI Production Systems. In fact, almost two thirds of the

sample claims to use no VCS whatsoever or file-naming conventions?.

Our hypothesis here is that (1) some commonly used file formats (e.g., Excel Workbooks)
don’t lend themselves easily to well-established version control tools like Git and (2) a lack of
familiarity with VCS tools in general.

Another interesting observation is that slightly less than one third of the sample uses Git
and/or GitHub/GitLab?.

A very small fraction of the sample indicated using other version control software such as
Mercurial, Subversion, or built-in versioning capabilities of another tool/platform.

!'Note that there is a small sample size caveat with observations involving Other Mix teams. Had the sample
size been larger, the observations we observed with this team type may not have been as extreme as what
we observed in the survey.

2We suspect that this is slightly biased by the fact that the majority of Stream-Aligned teams in our sample
are comprised of domain-analysts only rather than having both domain-embedded analysts and domain-
embedded IT professionals.

3For readers who are unfamiliar with the Consumer Prices business domain, these are techniques that are used
to calculate period-over-period price changes from a given data source.
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Figure 4.1: VCS used by survey respondents

Having both worked on non-trivial Complex Analytical Systems ourselves, we suspect that
adopting industry standard VCS toolingap may greatly reduce the cognitive load for teams
who are not currently using any VCS or are only using file-naming conventions to manage
source code and documentation for Complex Analytical Systems®.

4.2 Commercial Software

The next question we asked was which commercial software (if any) is used in each respondent’s
CPI Production systems.

We were not overly surprised to learn that over two thirds of the respondents listed that
Microsoft Excel was used in their CPI Production Systems.

Microsoft Excel satisfies a number of use cases for beginner-friendly tabular data analysis,
however, it is not an ideal tool for expressing business logic in Complex Analytical Systems®.

4We are skeptical that these two facts can be true at the same time. Our suspicion is that some respondents
have not explicitly thought about version control as a distinct problem with purpose-built tooling that exists
to solve it.

®In general, the Consumer Price Index is a non-revisable product, meaning that it is not straightforward to
“roll back” a change in the same way that would be possible in other settings. Because of this, there is
a certain level of due-diligence required for large system changes, meaning there are some limits on how
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Figure 4.2: VCS used by survey respondents

Some of the key reasons for this include:

Excel Workbooks are stored in a binary format rather than a plain text format, which
doesn’t integrate well with Version Control Systems.

There isn’t a well-defined entrypoint to an Excel Workbook (i.e., you can’t “run” an
Excel workbook the same way you can “run” python main.py).

The business logic encoded into an Excel Workbook is often difficult to read and interpret
for any non-trivial Workbook, making Excel Workbooks difficult to maintain as a unit
of software.

Excel Workbooks encourage a high degree of coupling between business logic and data®.

In a distant second to Microsoft Excel, we find SAS is the next most commonly used commercial
product in CPI Production Systems.

frequently CPI Production Systems can be updated.

5Note that this can be as simple as having a production folder and a development folder on a network file
system and scoping activities to the appropriate folder. More complex separations of development, testing,
and production environments are possible, but we encourage readers to start simple if this is a new concept.
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4.3 Project Management Software

We asked respondents which project management software they use to manage work done on
their CPI Production Systems.

The exact set of features provided by project management software differ depending on the
specific software used, but in general, this kind of software is used to plan and coordinate
tasks, manage timelines, and track progress on work items.

We believe that using some purpose-built project management software for any non-trivial
project is generally a good idea because it encourages a structure to the way projects are
managed and it offers a way to reduce cognitive burden for project team members’.

Project Management Software Used

Software
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Jira -
None -

GitLab Milestones -
Shared Excel Workbook -

The most common project management software reported was a shared Excel Workbook, with
a bit less than half of respondents stating that they used this as their team’s primary means
of project management.

Shared Excel Workbooks may be sufficient for keeping track of small tasks, but for any endeav-
our that requires managing code, data, and documentation changes across multiple individuals,
this approach will lack a number of key features to facilitate the project management process.

"For example, if there is evidence that certain team structures, team interaction modes, and system archi-
tectures are more effective than others, then organizations that adopt the improved team topologies and
system architectures may see reduced maintenance costs and faster delivery times, among other benefits.
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The second most cited answer was not using any project management software whatsoever,
with almost one third of respondents indicating this answer.

Given the complexity of CPI Production Systems, we were surprised to see so many individuals
not using any project management software. For all but the simplest of initiatives, we believe
there is significant value in adopting at least the basic features of some purpose-built project

management software®.

Finally, just over twenty percent of the sample reported using either GitHub Projects, GitLab
Milestones, or Jira as their primary software for project management.

4.4 Programming Languages

We asked respondents which programming languages are used to develop their CPI Production
Systems. We found several observations noteworthy.

Programming Languages Used
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First, just under half of the respondents indicated that they use SQL in the development of
their CPI Production Systems.

8When working with this quantity of data, it is important to pay attention to the data types of each column
and to choose the most parsimonious data types. For example, if 3 columns can be correctly represented
with boolean, 16-bit integer, and 32-bit integer data types, there are significant memory savings to be gained
by casting the variables to these types upfront.
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We suspect this answer reflects the fact that SQL still remains a very popular choice of language
for expressing tabular data manipulations, as well as the fact that many organizations reported
using some kind of database management system (DBMS) in their CPI Production Systems.
Our suspicion is that SQL is most commonly used in the ingestion and processing steps in the
flow of change?®.

Second, we notice than more than ninety percent of the sample reported using at least one of
Python, R, and SAS in their CPI Production Systems. Interestingly, less than one quarter of
these users reported using Python and/or R but not SAS. In other words, it is quite common
for SAS to be used in conjunction with Python and/or R rather than being used instead
of Python and/or R.

Third, there are some differences in programming languages used between NSOs with mono-
lithic representative systems and NSOs with modular representative systems.

The most noteworthy observation is that Java, C#, C/C++, Visual Basic, and Visual Basic
Applications (VBA) are somewhat commonly used by NSOs with monolithic representative
systems (almost two thirds) and almost never used by NSOs with modular representative
systems (less than one quarter).

Additionally, we notice that slightly over one third of NSOs with monolithic representative
systems report using R or SAS, while almost two thirds of NSOs with modular representative
systems report using R or SAS.
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9To minimize response burden, we did not ask respondents to enumerate programming languages used by
GSBPM step, so we cannot say for sure in which step(s) SQL is used.
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[Modular] Programming Languages Used
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4.5 Data Storage Tools

We conclude the Tools and Technology portion of the survey by asking which data storage
tools are in use by respondents in their CPI Production Systems.

We were surprised by the following findings.

1. A very small percentage of the respondents reported using analytics optimized file formats
such as Apache Parquet in their CPI Production Systems. There is a small learning curve
associated with using these file formats, but they offer many benefits such as columnar
storage on disk, data types supported natively by the file format, and a significantly
smaller storage footprint due to columnar data compression strategies'’.

2. There is an approximately equal split between the usage of Database Management Sys-
tems (DBMS) and file system storage, which is true across both NSOs with modular
representative systems and NSOs with monolithic representative systems.

3. The small number of respondents who reported using something in addition to DBMS or
filesystem storage all belonged to NSOs with modular or hybrid representative systems.

10UPSERT is a portmanteau of the common INSERT and UPDATE database operations.

35


https://parquet.apache.org/

Frequency

= N
o S
v v

Frequency

Storage Systems Used

30-

0-

DBMS -
Filesystem -
Object Storage -

Analytics File Format -

Storage

(a) Choice of Storage (Overall)

[Hybrid] Storage Systems Used

5
n
3-
2+
1-
0+

Storage

DBMS -
Filesystem -

(a) Choice of Storage (Hybrid)

[Monolith] Storage Systems Used

15-

=
o
v

Frequency

o
'

0-

DBMS -
Filesystem -

Storage

(a) Choice of Storage (Monolith)

[Modular] Storage Systems Used

9-

Frequency

6-
3-
0-

36

Storage

DBMS -
Filesystem -

(a) Choice of Storage (Modular)



5 System Age and Updates

The next section of the survey asks questions about (1) the age of the majority of CPI Pro-
duction Systems and (2) the update frequency of the majority of CPI Production Systems.

5.1 System Age

Respondents are presented with the following question.

Indicate the age of the majority of the systems used for each step to make your CPI.

Data ingestion Data processing Elementary indexes Aggregation Finalization

<1 year
2-5years
6-10 years
11-20 years
>20years
Don't know

No answer (] (] [} L) L]

Figure 5.1: Age of Systems Survey Question

In this question, we aim to understand for how long the majority of CPI Production Systems
at NSOs have been in operation.

In the context of this question, a system could be long-lived because (1) it was built in an
extensible fashion and has been easy to update and maintain over a long time period, (2)
the requirements of the system have changed very little over a long time period, or (3) every
component of the system has been replaced at some point without ever doing a full “system
rewrite” (see Theseus’s Paradox).

Therefore, without more information about the maintenance history of these systems, we
cannot say whether older systems are “good” or “bad”. Nevertheless, it is interesting to
understand how old the typical CPI Production System is.

We share some notable observations and explanations below.

The system age distribution for NSOs with modular representative systems is approximately
uniform, while NSOs with monolithic representative systems are more likely to report that the
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majority of their systems are between 6-20 years old, and less likely to report that the majority
of their systems are more than 20 years old.

One possible explanation for this observation is that monolithic systems are more likely to
reach a level of complexity where it becomes too difficult to reliably make changes to the
system due to a high degree of coupling (inter-dependency) between components!. If this is
true, it could be the case that relatively few monolithic systems reach an age greater than 20
years before a complete system rewrite is necessary.

System Age Distribution (Stream Aligned) System Age Distribution (IT-Only)
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NSOs with IT-Only teams appear relatively less likely to have the majority of systems be less
than 20 years old, compared to their Analyst-Only and Stream-Aligned counterparts. One
possible explanation is that IT-Only teams are more likely to have the technical skills to
perform a full system rewrite when it becomes necessary, although we don’t have sufficient
data to say for sure.

!Note that there is a small sample size caveat with observations involving Other Mix teams. Had the sample
size been larger, the observations we observed with this team type may not have been as extreme as what
we observed in the survey.
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Another noteworthy observation is that NSOs with Other Mix teams (see Chapter 3) are most
likely to have the majority of systems be between 6-10 years old. It is noteworthy that most
of the NSOs with Other Mix teams also have Monolithic representative systems, so there is a
high degree of overlap between Other Mix teams and Monolithic representative systems.

Our hypothesis for this observation is that teams comprised of individuals with little shared
domain context (e.g., a team with individuals from Corporate IT as well as Domain Analysts)
are more likely to produce overly complicated and tightly inter-connected systems that are
difficult to change?. After 6-10 years, these systems become so difficult to maintain that it
becomes necessary to undergo a full system rewrite?.

5.2 System Update Frequency

Respondents are presented with the following question.

Indicate how often the majority of systems are usually updated, for each step to make your CPL Include only non-trivial updates that affect the functionality of the system.

Data ingestion Data processing Elementary indexes Aggregation Finalization
Daily
Weekly
Monthly
Quarterly
Every six months
Once per year
Less than once per year
Never updated

No answer () () o o L)

Figure 5.9: Age of Systems Survey Question

In this section, we ask respondents how often the majority of CPI Production Systems are
usually updated.

2We suspect that this is slightly biased by the fact that the majority of Stream-Aligned teams in our sample
are comprised of domain-analysts only rather than having both domain-embedded analysts and domain-
embedded IT professionals.

3For readers who are unfamiliar with the Consumer Prices business domain, these are techniques that are used
to calculate period-over-period price changes from a given data source.
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Unless software is being written in a domain where (1) the problem is “solved” (i.e., require-
ments never change) and/or (2) the software’s correctness can be proved mathematically,
routinely updating systems (e.g., fixing errors in source code or enhancing the system with
new features) is a practical reality of software development.

Given this practical reality, updating systems at a somewhat high frequency is generally con-
sidered to be good practice *.

We share below some observations on how frequently respondents update their systems.

Update Frequency Distribution (Overall) Update Frequency Distribution (Monolith)
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NSOs with monolithic representative systems are much more likely to never update systems
compared to NSOs with Modular representative systems.

We suspect this is once again related to the fact that monolithic systems tend to be complex
and involve many inter-connected components. In the most extreme case, it can be too risky

4We are skeptical that these two facts can be true at the same time. Our suspicion is that some respondents
have not explicitly thought about version control as a distinct problem with purpose-built tooling that exists
to solve it.
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to update these systems due to the possibility of a change in one part of a system causing
unintended consequences in another (seemingly unrelated) part of the system.

Modular systems, in contrast, tend to be easier to reason about, and involve a lower degree of
coupling between system components that are unrelated. Hence, making a change to a system
component is less likely to lead to an unintended consequence elsewhere in the system.

Across all respondents, almost one fifth of respondents indicated that the majority of their
systems are never updated. We are very surprised by this finding.

More generally, the distribution of update frequencies seems to be left skewed, with a majority
of NSOs having the majority of systems updated once per year or less, or not updated at all.
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When looking at the system age distributions broken down by team type, we do not see much

difference from the overall trend. One noteworthy exception to this is the Other Mix team
category, which seems to have a relatively high proportion of cases updated less than once per
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year or not at all®.

5In general, the Consumer Price Index is a non-revisable product, meaning that it is not straightforward to
“roll back” a change in the same way that would be possible in other settings. Because of this, there is
a certain level of due-diligence required for large system changes, meaning there are some limits on how
frequently CPI Production Systems can be updated.
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6 Number of People

In this section of the survey, we are interested in how many individuals need to participate in
(1) small system changes and (2) large system changes.

The rationale behind asking this question is to get a sense for how much communication over-
head is required to make changes to CPI Production Systems. We assume that the requirement
of more individuals is associated with more communication overhead.

6.1 Number of People (Small Changes)

Respondents are presented with the following question.

How many individuals typically need to participate in a small change to a typical system, for each step to make your CPI?

Data ingestion Data processing Elementary indexes Aggregation Finalization

1 individual
2-3individuals

4-6 individuals

7-9 individuals

10-15 individuals
16-24 individuals

25 or more individuals

No answer (] (] () () L)

Figure 6.1: Number of Individuals for small changes

Overall, the majority of respondents indicate between 1-3 individuals needing to be involved
with small changes, while a minority indicate that 4 or more individuals need to be involved
with small changes.

Our sense is that 1-3 individuals participating in a small change is reasonable. For low risk
small changes, one person could make the change in isolation, while for more important
small changes, one or two individuals could quickly peer review the change before it is im-
plemented.
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It appears that NSOs with Hybrid or Modular representative systems are slightly more likely
to involve 4-6 individuals in small changes compared to NSOs with Monolithic representative
Systems.

Our suspicion here is that NSOs with Hybrid or Modular representative systems are more likely
to have “interface boundaries” between systems maintained by two or more distinct teams. If
this is the case, certain small changes may require input from individuals across two or more
teams. This is not necessarily unreasonable. If system and team boundaries are well defined,
communication about small changes to a system can still be efficient even if a slightly greater
number of individuals need to be made aware of the small change.

There are no significant differences in the number of individuals required for small changes
between the various team types.

6.2 Number of People (Large Changes)

Respondents are presented with the following question.

How many individuals typically need to participate in a large change to a typical system, for each step to make your CPI?

Data ingestion Data processing Elementary indexes Aggregation Finalization

1 individual
2-3individuals

4-6 individuals

7-9 individuals

10-15 individuals
16-24 individuals

25 or more individuals

No answer L) L) L) (] e

Figure 6.5: Number of Individuals for large changes

Unsurprisingly, more individuals are required to participate in large changes than small
changes. It appears that the majority of respondents require between 2-6 individuals to
participate in a large change to a system.

Interestingly, there is not a significant difference in the number of people required for large
changes between NSOs with Monolithic representative systems and NSOs with Modular rep-
resentative systems. Moreover, there is also no meaningful difference in this metric between
the various team compositions.
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We were a bit surprised by this finding, as we expected that certain team compositions and sys-
tem architectures would be associated with differing numbers of people who need to participate
in large changes.

Our hypothesis here is that the number of people required to participate in large changes is
probably a function of organization size more than anything else. For example, if the size of
all teams involved in a large change for a small NSO is 6, then it would be impossible for the
total number of individuals to exceed 6, regardless of the CPI System architecture or the team
compositions.
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7 Lead Time

In this section, we ask questions about the lead time of (1) small and (2) large changes to CPI
Production Systems.

In the context of software systems, lead time measures the time it takes for a committed
code change to reach production, which reflects the efficiency of the software delivery process
(Forsgren, Humble, and Kim (2018)).

Given that we are looking at Complex Analytical Systems rather than traditional software
systems in this survey (see Section 1.2), we modify this definition slightly to refer to the
total amount of time required to get an end-to-end change to a CPI Production System im-
plemented, which could include activities in addition to code implementation such as data
analysis, methodology research, and discussions with data providers.

Lead time is generally regarded as a very important performance metric, and short lead times

are generally considered better than long lead times!.

We prompt the respondent with some examples of small and large changes before asking the
lead time questions.

Example of a small change:

e A small piece of code in a system needs to be modified to update business logic for
processing a particular data source.

¢ A new sheet needs to be added to an Excel Workbook to perform a new calculation in
a system.

Examples of a large change:

¢ An entirely new methodology was recently discovered and needs to be introduced as one
of the options in an elementary aggregate system.

e A system was previously ingesting survey data, but it now needs to also ingest retail
scanner data.

!Note that there is a small sample size caveat with observations involving Other Mix teams. Had the sample
size been larger, the observations we observed with this team type may not have been as extreme as what
we observed in the survey.
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7.1 Lead Time (Small Changes)

Respondents are presented with the following question.

Indicate the amount of time typically required to make a small change to a system, for each step to make your CPI.

Data ingestion Data processing Elementary indexes Aggregation Finalization
Within 1 day
Within 1 week
Within 1 month
Within 3 months
Within 1 year
More than 1 year
Too complex
Can't be modified

No answer ® o ® L) ®

Figure 7.1: Lead times for small changes

Overall, the majority of lead times for small changes are between 1 day and 1 week, with a
minority of respondents indicating small changes happening within 3 months (i.e., 3 months
or less).

Our expectation is that small changes of the magnitude we described in the question prompt
should take teams at most a few days to implement, test, and integrate into production
systems. We were a bit surprised to see a non-trivial fraction of the sample reporting lead
times of “Within 1 month” or “Within 3 months” for small changes.

It is also noteworthy that NSOs with monolithic representative systems were more likely to
report lead times for small changes of “Within 1 day”, whereas NSOs with modular represen-
tative systems were more likely to report lead times for small changes of “Within 1 week”.

Our hypothesis here is that, by definition, a modular representative system is more likely than
a monolithic representative system to span two or more teams. Therefore, small changes may
still need to be reviewed by a member on each team. It is reasonable that it might take more
than one business day to find a time where the various team members are available to meet,
so this alone could cause a small change to take more than one day.
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In either case, our view is that “Within 1 day” and “Within 1 week” are both reasonable
answers to this question.

Lead Time for Small Changes (Stream—Aligned) Lead Time for Small Changes (IT-Only)
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count
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Within 1 month -

Within 1 day
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(a) Lead Time for Small Changes (Stream-Aligned)  (a) Lead Time for Small Changes (IT-Only)
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(a) Lead Time for Small Changes (Analyst-Only) (a) Lead Time for Small Changes (Other Mix)

With respect to team composition, Stream-Aligned teams, IT-Only teams, and Analyst-Only
teams had lead time distributions that were close to the overall lead time distribution. The
most common response for Other Mix teams is “Within 1 month”, but the sample size for this
team type is too small to conclude anything meaningful here.

7.2 Lead Time (Large Changes)

Respondents are presented with the following question.

02



Indicate the amount of time typically required to make a large change to a system, for each step to make your CPIL.

Data ingestion Data processing Elementary indexes Aggregation Finalization
Within 1 day
Within 1 week
Within 1 month
Within 3 months
Within 1 year
More than 1 year
Too complex
Can't be modified

No answer [} L) L L} (]

Figure 7.9: Lead times for large changes

Overall, the lead time for large changes was very right skewed, with the most common response
being that large changes happen “Within 1 month”.

It is interesting that, unlike with small changes, NSOs with Monolithic representative systems
are more likely to report lead times of “Within 1 year” or “More than 1 year”, and they are
also more likely to report an answer of “Too complex” or “Can’t be modified”?.

This result is consistent with industry knowledge (Ford et al. (2021), Richards and Ford
(2020)) as well as earlier findings in this report (e.g., sec-age). Monolithic systems are more
likely to have components that are highly coupled (inter-connected) compared to modular
systems. This high degree of coupling not only makes it more difficult to reason through
changes to the system, but it also requires more rigorous testing to ensure that a large change
doesn’t break a seemingly unrelated component. Therefore, it is not surprising to observe
that NSOs with monolithic representative systems are more likely to report higher lead times
compared to NSOs with Modular representative systems.

When looking at the distribution of lead times for large changes by team type, there are several
noteworthy observations.

First, Stream-Aligned teams and Analyst-Only teams were more likely to report lead times of
“Within 1 month” compared to any other answer. Stream-Aligned teams and Analyst-Only

2For readers who are unfamiliar with the Consumer Prices business domain, these are techniques that are used
to calculate period-over-period price changes from a given data source.
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teams were a bit more likely to report shorter lead times compared to IT-Only teams, and
were much more likely to report shorter lead times compared to Other Mix teams.

This finding is consistent with the work of Skelton, Pais, and Malan (2019), which suggests that
Stream-Aligned teams organized around an end-to-end slice of a particular business domain
tend to move faster?.

It is also worth noting that “More than 1 year” is a somewhat common answer across all team
types, suggesting that a fraction of NSOs probably struggle with high lead times for reasons
other than team types.

We hypothesize that the lack of shared domain context in Other Mix teams could explain
why their reported lead times are much higher than the other 3 team types. As discussed in
Chapter 5, the lack of a shared domain context increases communication overhead as all parties
involved need to spend additional time bridging knowledge gaps. This extra communication
overhead could extend each step of the system development process, leading to longer lead
times overall.

3We suspect that this is slightly biased by the fact that the majority of Stream-Aligned teams in our sample
are comprised of domain-analysts only rather than having both domain-embedded analysts and domain-
embedded IT professionals.
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8 Alternative Data

In the world of official statistics, the term alternative data is used to describe sources of data
other than traditional field-collected data that can be used to derive meaningful statistics.

These data sources often require more complicated tooling and methodology to work with, but

offer certain benefits over field-collected data such as collection cost and comprehensiveness'.

In this section, we ask respondents about the extent to which they currently leverage alternative
data sources in their CPI Production Systems. We also ask respondents about the primary
challenges they face with respect to the adoption of Alternative Data in their CPI Production
Systems.

8.1 Alternative Data Usage

Just under two thirds of respondents report not using alternative data sources at all. Of those

that use alternative data sources, the majority of respondents report that “Less than 10%” or

“Between 10% and 30%” of their CPI is derived from alternative data sources?.

INote that there is a small sample size caveat with observations involving Other Mix teams. Had the sample
size been larger, the observations we observed with this team type may not have been as extreme as what
we observed in the survey.

2We suspect that this is slightly biased by the fact that the majority of Stream-Aligned teams in our sample
are comprised of domain-analysts only rather than having both domain-embedded analysts and domain-
embedded IT professionals.
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Of those NSOs that don’t currently use alternative data sources, almost three quarters of them
report that they would like to use alternative data sources. Of those NSOs that would like to
use alternative data sources, we asked them how much alternative data they would like to use
in their CPI Production Systems in an ideal scenario. We show this distribution below.

Warning in geom_bar(binwidth = 1, colour = "black", fill = "white"): Ignoring
unknown parameters: “binwidth’
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It appears that most NSOs want between 10% and 50% of their CPI to be comprised of
alternative data sources (by expenditure weight). Our suspicion is that leveraging alternative
data may be challenging for certain components of the CPI, so even in an ideal scenario, NSOs
may prefer to continue using field collected data for quality reasons.

8.2 Which Price Index Methods are Used on Alternative Data
Sources

Of those respondents reporting that they currently use alternative data sources, we asked which
price index methods are most commonly used®. The table below summarizes the number of
respondents who are using each method?.

GEKS 6
Time Dummy Hedonic 4
Hedonic 6
Other Multilateral <3
Dynamic Sample 5

3For readers who are unfamiliar with the Consumer Prices business domain, these are techniques that are used
to calculate period-over-period price changes from a given data source.

4We are skeptical that these two facts can be true at the same time. Our suspicion is that some respondents
have not explicitly thought about version control as a distinct problem with purpose-built tooling that exists
to solve it.
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Fixed Sample 16
Other 7

8.3 What Challenges are Faced in the Adoption of Alternative Data

We asked all respondents to rank the challenges they face in adopting alternative data
sources(regardless of whether or not they are currently using alternative data in their CPI
Production Systems).

Ranked Alternative Data Challenges

: IIIIII
Il.-—

COUI’]t

Lack of Provider Cooperation -
Insufficient Capacity -
Insufficient Skills -
Data Availability =
Data Quality Issues -
Methodology Knowledge -
Insufficient Authority =
No Willingness -
Insufficient Funding -
Not a Priority
Too Costly -

forcats::fct_infreq(Challenges)

(a) Ranked Alternative Data Challenges

Some alternative data challenges will be region-specific, such as lack of cooperation from data
providers, authority to collect alternative data, and availability of alternative data.

However, some commonly cited issues such as Insufficient Skills and Methodology Knowledge
can be addressed in part by effective knowledge sharing from domain experts.

60



9 Challenges

We conclude the survey by asking respondents to rank the challenges they face with respect
to system development and maintenance in general.

The survey question presented to respondents was as follows.

Indicate which of the following challenges your team faces with respect to system development and maintenance in general, ranked from most important (at the top) to least important (at the
bottom).

@ Double-clic gh to your lowest ranking item.

op items in the left list to move them to the right - your highest ranking item should be on the top right, moving tt

Available items Your ranking

Managing the interaction between systems (e.g., integration challenges, passing
inputs/outputs between systems).

Complexity within a system (e.g., managing complex code, managing large quantities of
code).

Keeping track of which version of a system was used to produce a certain version of an
output.

Human coordination/communication overhead (e.g., lots of people need to be involved with
every decision).

Communication challenges between teams (e.g., prices domain team struggles to communi-
cate requirements with corporate IT).

Lots of manual tasks that are not automated/cannot be automated (e.g., a person has to
manually review system outputs to validate them).

Lack of skills (e.g., people do not have the skills to maintain complex systems).

Organizational politics (e.g., mandate conflicts between corporate IT and the prices domain
team).

Verifying that a system behaves correctly (e.g., the price index calculation logic is correct).

Verifying the correctness of data (e.g., input data often contains mistakes, significant time is
spent negotiating error fixes with the data provider).

Lack of software tools (e.g., certain necessary software is not approved by corporate IT, a
commercial software product cannot be procured).

Lack of hardware (e.g., the only device provided is a single work computer, and this device
does not have enough CPU/memory/storage to work with large volumes of data).

Bureaucratic and process challenges (e.g., many "approval" steps are required to move work
forward).

Staff/resourcing challenges (e.g., not enough people to do the work, all of our time is spent
maintaining existing systems, so there is little/no capacity to develop new systems).

We don't have a "testing" environment, so we have to be really confident that our changes
are correct before testing them live in our production system.

None of these (we do not face any challenges).

We show a stacked bar chart of the 5 most commonly cited challenges below.
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Challenges Faced (Rank 1 through 5)

20~

COUI’]t

Lack of Staff -

Lack of Skills -

System Interactions -

System Complexity -

Verifying Correctness -

Manual Tasks -

Insufficient Software -

Insufficient Hardware -

Too Much Coordination

Validating Data -
Bureaucracy Challenges -
Organizational Politics
No Challenges -

No Testing Environment -

Cross—Domain Communication

forcats::fct_infreq(Challenges)

Figure 9.1: Challenges Faced (Rank 1 through 5)

By far the most commonly cited challenge was “Lack of Staff”. It is important to note that
this reported challenge could be explained by any combination of (1) teams working at peak
efficiency who are bottle necked by the number of individuals, or (2) teams where the same
number of individuals could improve their efficiency if other challenges were alleviated (e.g.,
skills gaps, technology gaps, and so on).

The second most commonly cited challenge was “Lack of Skills” in the development and mainte-
nance of CPI Production Systems. Given the technical, bespoke, and multidisciplinary nature
of CPI Production Systems, there is probably a significant opportunity to bridge the skills gap
by finding ways to facilitate knowledge sharing with domain experts.

Interestingly, managing the interaction between systems (“System Interactions”) registered
as the third most common challenge. Our suspicion is that most people who develop and
maintain CPI Production Systems don’t think extensively about how to integrate the outputs
from one system into the inputs of another downstream system.

For example, if one analyst writes an R script that performs some data processing and writes
an intermediate output to an intermediate-table.RData file, and a second analyst later
discovers they can leverage that intermediate output in another system they are working on, it
is unlikely that the second analyst will simply read the intermediate-table.RData file and
it will seamlessly integrate with their system.

The more likely scenario is that the first analyst’s output table will not be immediately com-
patible with the second analyst’s system (e.g., column names don’t match, data types for a
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primary key column don’t match, the two analysts were using different semantics for the same
concept, and so on)!.

In our experience, these kinds of system integration issues are usually small enough that they
are resolved in an ad hoc manner. However, the accumulation of many ad hoc solutions
over time can create significant technical debt and lead to significant system interaction chal-
lenges.

Tied for fourth place are (1) complexity within a system (e.g., managing large quantities of
code) and (2) verifying that a system behaves correctly.

Maintaining large and complex code bases over time is an inherently challenging problem that
requires years of practice. Our suspicion is that applying a relatively small number of relevant
ideas from software engineering can lead to a significant reduction in the complexity of CPI
Production Systems?. However, we emphasize that mastering these concepts takes significant
practice, even if the concepts are fairly straightforward at face value.

We were not surprised to learn that verifying system correctness registered as one of the
top challenges due to the complexity of CPI Production Systems. While there are a large
number of tools and techniques that can greatly facilitate the testing of software, being able
to take advantage of these tools and techniques requires a minimum level of knowledge. Every
major programming language comes with at least one comprehensive framework for automated
testing. However, taking advantage of these frameworks require adopting certain idioms in
order to integrate the testing framework into the code under test?. In brief, very good solutions
to this challenge exist, but they require a baseline level of programming skills to adopt in the
first place.

As a final note, we were very surprised to see so few respondents identifying Version Control
as a challenge. In Chapter 4, the majority of respondents indicated that they either don’t use
a version control system at all, or they use file-naming conventions to version files. We are
skeptical that these two facts are true at the same time.

Our suspicion is that the concept of learning how to use a tool like Git that exists specifically
for the purpose of revision control is not something that many survey respondents considered
until encountering it in the survey. We therefore suspect that respondents may have lumped
revision control challenges with another type of challenge such as “Manual Tasks” or “System
Complexity”.

!Note that there is a small sample size caveat with observations involving Other Mix teams. Had the sample
size been larger, the observations we observed with this team type may not have been as extreme as what
we observed in the survey.

2We suspect that this is slightly biased by the fact that the majority of Stream-Aligned teams in our sample
are comprised of domain-analysts only rather than having both domain-embedded analysts and domain-
embedded IT professionals.

3We are skeptical that these two facts can be true at the same time. Our suspicion is that some respondents
have not explicitly thought about version control as a distinct problem with purpose-built tooling that exists
to solve it.
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10 Conclusion

As far as we know, this is the first survey to investigate the current state of CPI Production
Systems at National Statistics Organizations (NSO)s around the world. By introducing a
generic set of concepts around system and team structure, we were able to derive some mean-
ingful information about how CPI Production Systems and the teams that maintain them are
organized. We were also able to characterize several important aspects of the teams maintain-
ing these systems, including the tools and technologies they use, the age and update frequency
of typical systems, number of collaborators, lead time, and challenges faced.

We begin by highlighting some noteworthy observations throughout the survey. Next, we
provide some concrete and practical suggestions that we believe to be beneficial for both CPI
Production Systems teams and teams maintaining Complex Analytical Systems more generally.
Finally, we highlight future work that we believe will be productive.

10.1 Bottom Line Up Front

This section highlights some of the noteworthy results we found in our survey on CPI Produc-
tion Systems.

10.1.1 System and Team Organization

e The two most common ways that system components are coupled across GSBPM steps
are (1) to have one system span both the data ingestion step and the data processing
step, and (2) to have one system span all 5 GSBPM steps.

e By far the most common team structure we found was comprised only of domain-
embedded analysts. The second most common team structure we found was a mix
of Corporate I'T employees and domain-embedded analysts.

e Teams of domain-embedded analysts and domain-embedded IT professionals were not
very common, suggesting that it is not common practice to embed IT staff within a
business domain team. In other words, I'T expertise tends to be centralized rather than
embedded in business domain teams, which may contribute to increased communication
overhead due to centralized IT staff lacking important business domain context.
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o Using the “Representative System Group” question, we were able to elicit a high-level
description of the system and team organization for a representative group of CPI Pro-
duction Systems at the respondent’s organization. While this system/team description
was high level, it provided us with enough information to loosely group NSOs into 3
architecture categories (Monolithic, Hybrid, Modular) and 4 team categories (Stream-
Aligned, IT-Only, Analyst-Only, Other Mix).

e IT-Only teams were the most likely to develop Modular Systems compared to the other
3 team types.

e The most common architecture type overall was Monolithic.

e Other Mix teams were much more likely to develop Monolithic systems compared to the
other 3 team types'.

10.1.2 Tools and Technologies

¢ A majority of respondents surveyed don’t use any kind of Version Control System
at all. The second most common answer was GitLab/GitHub, and the third most
common version control strategy was to use “File Naming Conventions”.

e Microsoft Excel was by far the most commonly used commercial software product in
CPI Production System teams. The next most common product used was SAS, and the
third most commonly used product is Microsoft Access.

e The most common tool used for project management was a shared Microsoft Excel
workbook, while the second most common response was to not use any software for
project management.

e The most common programming language used across all systems is SQL, while the
second most frequently used language is tied between Python, R, and SAS.

¢ Among organizations with Monolithic representative systems, SQL is still the most com-
monly used language, with many other languages being reported. For example, Java,
Python, Visual Basic Applications, R, Visual Basic, SAS, C#, and C++ are all being
used by multiple organizations.

¢ Among organizations with Modular representative systems, R and SAS are tied for first
place, with SQL in a close second. The only other responses with more than a couple
of occurrences are “None” (i.e., no programming language is used), Python, and Visual
Basic Applications.

!Note that there is a small sample size caveat with observations involving Other Mix teams. Had the sample
size been larger, the observations we observed with this team type may not have been as extreme as what
we observed in the survey.
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o By far the most commonly used storage formats were (1) Database Management Systems
(DBMS) and (2) file systems, with the former having a slightly higher occurrence.

¢ Very few respondents reported leveraging analytics-optimized file formats such as Apache
Parquet, and very few respondents reported using Object Storage solutions such as Ama-
zon S3 or Azure Data Lake Storage.

10.1.3 System Age and Updates

¢ Organizations with Monolithic representative systems are most likely to report a system
age of 6-10 years or 11-20 years, while organizations with Modular representative systems
are equally likely to report any of the system ages provided.

e IT-Only teams were much less likely to report a system age of “more than 20 years”
compared to Stream Aligned teams and Analyst-Only teams.

¢ Other Mix teams were much more likely to report a system age of 6-10 years compared
to any of the other options.

e Organizations with Monolithic representative systems were much more likely to report
that the majority of systems that are never updated compared to organizations
with Modular representative systems.

e Overall, the most common answers for how often the majority of systems are updated
were (1) less than once per year, (2) never updated, and (3) once per year.

e Stream-Aligned teams were the most likely to report that the majority of systems are
never updated, with all other team types reporting this answer multiple times?. Updating
systems less than once per year was the most common answer across all team types.

e Other Mix teams didn’t report any update frequency that was more frequent than every
six months.

10.1.4 Number of People

e Most small changes require the participation of 2-3 individuals, with answers of “1 indi-
vidual” and “4-6 individuals” also being somewhat common.

¢ Organizations with monolithic representative systems were slightly more likely to report a
smaller number of individuals participating in small changes compared to organizations
with modular representative systems.

2We suspect that this is slightly biased by the fact that the majority of Stream-Aligned teams in our sample
are comprised of domain-analysts only rather than having both domain-embedded analysts and domain-
embedded IT professionals.
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¢ Organizations with monolithic representative systems were most likely to require partic-
ipation of 4-6 individuals or 2-3 individuals for large changes, whereas organizations
with modular representative systems were most likely to report requiring participation
of 2-3 individuals. For both architecture types, there were a roughly equal number of
answers requiring 7-9 individuals or more for large changes.

10.1.5 Lead Times

e The most common responses overall were lead times of “within 1 week” or “within 1 day”
for small changes. However, a non-trivial fraction of respondents reported lead times
of “within 1 month” or “within 3 months” for small changes.

e There was no meaningful difference between architecture types or team types for lead
times on small changes.

e Organizations with monolithic representative systems were more likely to report lead
times of “within 1 year” or “more than 1 year” for large changes compared to orga-
nizations with modular representative systems. A few respondents from organizations
with monolithic representative systems reported that large changes were “too complex”
or “the system can’t be modified”, whereas zero respondents from organizations with
modular representative systems reported either of these answers.

e The most common lead time for large changes by far among organizations with stream-
aligned teams was “within 1 month”, whereas I'T-Only teams were almost equally likely
to report “within 1 week”, “within 1 month”, “within 3 months”, or “more than 1 year”.

e Other Mix teams reported the longest lead times for large changes, with every lead
time reported being “within 1 month” or longer.

o Across all team types, “within 1 year” and “more than 1 year” were somewhat common
answers to the question about lead times for large changes.

10.1.6 Alternative Data Usage

e Just under two thirds of respondents report not using alternative data at all.

e Of those respondents that do use alternative data, the majority of respondents report
that “less than 10%” or “between 10% and 30%” of their CPI is comprised of alternative
data by expenditure weight.

e Of those respondents that don’t use alternative data, almost three quarters of them
report that they would like to use alternative data.
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o The most commonly cited challenges with respect to alternative data adoption are (1)
lack of data provider cooperation, (2) insufficient capacity, and (3) insufficient skills to
work with alternative data.

10.1.7 Overall Challenges Faced

¢ The most commonly cited challenge by far was “lack of staff”, followed by “lack of skills
maintaining complex systems” and “system interactions” in second and third place.

o Tied for fourth place are (1) managing complexity within a system (e.g., maintaining
large quantities of code) and (2) verifying that a system behaves correctly.

o Almost noone cited “version control” as a challenge they faced, despite the majority of
respondents indicating that they do not use any kind of version control solution or file

naming conventions®.

10.2 Practical Suggestions

Based on our survey results, we have several concrete and practical suggestions that may
help the teams responsible for CPI Production Systems to manage complexity and reduce
maintenance burden for these systems. While this guidance is targeted at the audience of this
survey, our suspicion is that other teams managing similar Complex Analytical Systems may
benefit from applying a number of the suggestions in this section.

| Important

All of these suggestions are guidelines based on correlational evidence and general industry
knowledge.

We are not claiming any strict cause-and-effect relationships from this survey alone.
Rather, our goal is to encourage readers to think critically about these suggestions and
to pursue suggestions that resonate based on their own experiences.

3We are skeptical that these two facts can be true at the same time. Our suspicion is that some respondents
have not explicitly thought about version control as a distinct problem with purpose-built tooling that exists
to solve it.
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Table 10.1: Practical Takeaways from Survey

Suggestion

Explanation

Think explicitly about system
boundaries.

Think explicitly about data
interchange between systems.

Embed technical expertise in
business domain teams.

Adopt Git and GitLab or
GitHub as a Version Control
System for code, configuration,
and documentation.

There is some evidence in our survey that monolithic
architectures are associated with certain outcomes such as
(1) longer lead times for large changes and (2) never
updating systems. Are two unrelated concerns
implemented in the same system? Would it be easier to
maintain your codebase if these concerns were split into
two independent components?

If an important piece of data is exchanged between two or
more systems, take the time to properly document
important properties of the data such as the columns
available, the data types, and the semantics of the data.
This will make it easier for data consumers to use this
data. One way to formalize this data exchange is through
a standard format such as Data Contract Specification.
There is some evidence in our survey that “Other Mix”
teams underperformed the other team mixes on several
outcomes. Effectively developing and maintaining CPI
Production Systems requires a team of individuals with
both strong domain knowledge and strong technical skills.
Whether technical expertise is embedded by directly
employing IT professionals within the business domain
team, or by upskilling domain-embedded analysts to
improve their technical skills, our belief is that improving
the technical capacity of business domain teams who own
CPI Production Systems will lead to a number of
improved business outcomes.

The cognitive load of understanding CPI Production
Systems is already high enough without manually keeping
track of version control and code integration from multiple
collaborators. Allow a purpose-built tool handle the
burden of revision control.
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Suggestion Explanation

Leverage analytics optimized Adopting a columnar file format like Parquet along with a
file formats like Apache handful of best practices makes it feasible to work with
Parquet larger than memory datasets on a single machine. For

example, if you only need to use 3 out of 50 columns of a
table for a particular task, you can load tens of millions of
records into memory on a modest commodity computer?.
You can then work with this data using an industry
standard data manipulation library such as Python’s
Pandas, Apache Arrow, or R Data Frames to name a few.
Where it’s feasible, implement  If you can model your flow of change as directed acyclic
Complex Analytical Systems as  graph (DAG) where nodes represent the state of data and

pipelines with one-way data edges between nodes represent idempotent operations, it is
flows and idempotent possible to significantly reduce the complexity of state
operations. management in your Complex Analytical System.A

practical example of this concept is a data processing
workflow that involves an upsert operation to update
records®. If a batch of data contains records that are not
in the original table, they will be inserted into the table,
otherwise they will be updated in the table. What makes
this operation idempotent is the fact that the same
batch of data can be upserted to the table multiple times
and the final result will be the same as if this operation
happened only once.

4“When working with this quantity of data, it is important to pay attention to the data types of each column
and to choose the most parsimonious data types. For example, if 3 columns can be correctly represented
with boolean, 16-bit integer, and 32-bit integer data types, there are significant memory savings to be gained
by casting the variables to these types upfront.

SUPSERT is a portmanteau of the common INSERT and UPDATE database operations.
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Suggestion Explanation

Practice updating systems In software engineering, there is a commonly used

more frequently. performance metric called Deployment Frequency
(Forsgren, Humble, and Kim (2018)), which measures how
frequently code is deployed to production. The closest
analog to this concept in the world of CPI Production
Systems is what we’ve been referring to as “Update
Frequency” throughout this report. The rationale for
deployment frequency is that it’s better to deploy many
small and safe changes regularly than to deploy big risky
changes infrequently. There are limits to how far this can
be taken with CPI Production Systems, however, our
belief is that frequently updating and testing systems with
small changes leads to fewer unforeseen issues when it
comes time to release a change for production®.

Ensure your CPI Production When dealing with complex systems, it is critical to have a
System can operate in a safe environment where teams can “move fast and break
separate development things” without any risk to the production version of the
environment. system’. This is in contrast to only having the live

production system to perform tests on, in which case one
needs to be absolutely certain that a change won’t
irreparably break the live production system. In extreme
cases, this proposition is so risky that the production
system is never updated at all.

10.3 Future Work

We believe there are many areas of future work on this topic, but for brevity, we attempt to
summarize them into two main categories below.

First, as mentioned at the beginning of this report, teams maintaining Complex Analytical
Systems often struggle with many aspects of managing system complexity.

5In general, the Consumer Price Index is a non-revisable product, meaning that it is not straightforward to
“roll back” a change in the same way that would be possible in other settings. Because of this, there is
a certain level of due-diligence required for large system changes, meaning there are some limits on how
frequently CPI Production Systems can be updated.

"Note that this can be as simple as having a production folder and a development folder on a network file
system and scoping activities to the appropriate folder. More complex separations of development, testing,
and production environments are possible, but we encourage readers to start simple if this is a new concept.
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What is noteworthy is that none of these system complexity challenges are unsolved problems.
As we note several times throughout our report, these problems have been examined extensively
in other disciplines such as software engineering, and satisfactory solutions to these problems
have often existed for decades.

Moreover, there is an abundance of freely available online material to teach these best practices,
and there are often open source software products that address many of these challenges as
well. There are even initiatives such as Reproducible Analytical Pipelines (RAP) (NHS (2017))
which actively curate the most relevant software engineering concepts for the kind of work
required by Complex Analytical Systems.

Despite all of this, at the time of producing this report (April, 2025), effectively managing
Complex Analytical Systems seems to be far from a solved problem. To this end, we think there
is significant value in understanding the reasons this gap is so difficult to bridge. Importantly,
is there a communication gap that can be bridged by more effectively connecting business
domain analysts with the relevant content, or is the issue related to cognitive load or some
other constraint limiting the bandwidth of these business domain teams?

Second, are there improvements that can be made to both (1) system architecture and (2)
team organization for Complex Analytical Systems in order to improve business outcomes? For
example, to what extent has Conway’s Law impacted the architecture of Complex Analytical
Systems such as the CPI Production Systems studied in this report? Would different team
structures and team interaction modes lead to more effective system architectures?

Our survey provides some evidence that certain findings from the world of software engineering
regarding team organization and system architecture may indeed be applicable to Complex
Analytical Systems. However, the evidence from this survey alone is insufficient to make any
sweeping generalizations about Complex Analytical Systems as a whole.

To this end, we believe there is significant business value to be gained by further investigat-
ing these topics in the context of other business domains maintaining Complex Analytical
Systems®.

8For example, if there is evidence that certain team structures, team interaction modes, and system archi-
tectures are more effective than others, then organizations that adopt the improved team topologies and
system architectures may see reduced maintenance costs and faster delivery times, among other benefits.
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